N ov 2 00 1 Curvature , Connected Sums , and Seiberg - Witten Theory Masashi

نویسندگان

  • Masashi Ishida
  • Claude LeBrun
چکیده

We consider several differential-topological invariants of compact 4-manifolds which arise directly from Riemannian variational problems. Using recent results of Bauer and Furuta [5, 4], we compute these invariants in many cases that were previously intractable. In particular, we are now able to calculate the Yamabe invariant for certain connected sums of complex surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

J un 2 00 3 Curvature , Connected Sums , and Seiberg - Witten Theory

We consider several differential-topological invariants of compact 4-manifolds which directly arise from Riemannian variational problems. Using recent results of Bauer and Furuta [5, 4], we compute these invariants in many cases that were previously intractable. In particular, we are now able to calculate the Yamabe invariant for many connected sums of complex surfaces.

متن کامل

Seiberg-witten-floer Homology of a Surface times a Circle

We determine the Seiberg–Witten–Floer homology groups of the 3-manifold Σ × S 1, where Σ is a surface of genus g � 2, together with its ring structure, for a Spin� structure with non-vanishing first Chern class. We give applications to computing Seiberg–Witten invariants of 4-manifolds which are connected sums along surfaces and also we reprove the higher type adjunction inequalities obtained b...

متن کامل

Scalar Curvature , Diffeomorphisms , and the Seiberg - Witten Invariants

One of the striking initial applications of the Seiberg-Witten invariants was to give new obstructions to the existence of Riemannian metrics of positive scalar curvature on 4– manifolds. The vanishing of the Seiberg–Witten invariants of a manifold admitting such a metric may be viewed as a non-linear generalization of the classic conditions [16, 15, 21] derived from the Dirac operator. If a ma...

متن کامل

Removable singularities and a vanishing theorem for Seiberg-Witten invariants

This result is the Seiberg-Witten analogue of Donaldson’s original theorem about the vanishing of the instanton invariants [2] for connected sums. An outline of the proof of Theorem 1.1 was given by Donaldson in [1]. The key ingredient of the proof is a removable singularity theorem for the Seiberg-Witten equations on flat Euclidean 4-space. A proof of Theorem 1.1 was also indicated by Witten i...

متن کامل

Positive Scalar Curvature

One of the striking initial applications of the Seiberg-Witten invariants was to give new obstructions to the existence of Riemannian metrics of positive scalar curvature on 4– manifolds. The vanishing of the Seiberg–Witten invariants of a manifold admitting such a metric may be viewed as a non-linear generalization of the classic conditions [12, 11] derived from the Dirac operator. If a manifo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009